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“If you want to make a difference, you have to learn how to 
operate within imperfect systems. Burning things down 
rarely works. It may allow for personal gains. But if you care 
about making the system work for many, you have to do it 
from the inside.”

—Nadya Bliss, computer scientist at Arizona State University
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Part 1 
Introduction and preliminaries
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Chapter 1
Establishing trust
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“A decision aid, no matter how sophisticated or 
‘intelligent’ it may be, may be rejected by a decision 
maker who does not trust it, and so its potential benefits 
to system performance will be lost.”

—Bonnie M. Muir, psychologist at University of Toronto

“The toughest thing about the power of trust is that it’s 
very difficult to build and very easy to destroy.”

—Thomas J. Watson, Sr., CEO of IBM



Trust is the willingness of a trustor to be 
vulnerable to the actions of a trustee 
based on the expectation that the trustee 
will perform a particular action important 
to the trustor, irrespective of the ability to 
monitor or control the trustee.
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Trusted vs. trustworthy The trustee has certain 

properties that make it 

trustworthy. 

The qualities by which the 

trustor can expect the trustee 

to perform the important action 

referred to in the definition of 

trust.

Being trustworthy does not 

automatically imply that the 

trustee is trusted. 

The trustor must consciously 

make a decision to be 

vulnerable to the trustee based 

on its trustworthiness and 

other factors including 

cognitive biases of the trustor. 

Understandably, potential 

trustors who are already 

vulnerable as members of 

marginalized groups may not 

want to become even more 

vulnerable.

Trustworthy Machine Learning 9



Attributes of trustworthiness
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Source Attribute 1 Attribute 2 Attribute 3 Attribute 4

trustworthy people

Mishra competent reliable open concerned

Maister et al. credibility reliability intimacy
low self-
orientation

Sucher and Gupta competent
use fair means to 
achieve its goals

take responsibility 
for all its impact

motivated to serve 
others’ interests as 
well as its own

trustworthy artificial 
intelligence

Toreini et al. ability integrity predictability benevolence

Ashoori and Weisz
technical 
competence

reliability understandability
personal 
attachment



A trustworthy machine learning 
system is one that has 
sufficient:
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1

basic 

performance

2

reliability

3

human 

interaction

4

aligned 

purpose
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Exercise
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Spend 3 minutes writing down 

your positionality.

Description of your identity in 

society, including privileges 

and experiences, especially as 

it relates to developing and 

deploying artificial intelligence-

based technologies.



Chapter 2
Machine learning lifecycle
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“People are involved in every phase of the AI lifecycle, 
making decisions about which problem to address, which 
data to use, what to optimize for, etc.”

—Jenn Wortman Vaughan, research scientist at Microsoft

“We all have a responsibility to ask not just, ‘can we do 
this?’, but ‘should we do this?’”

—Kathy Baxter, ethical AI practice architect at Salesforce
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problem 
specification

data understanding

data preparation

modeling

evaluation

deployment and 
monitoring

problem 
owner

ML operations 
engineer

model 
validator

data 
scientist

data 
engineer

diverse 
stakeholders
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pre-processing pre-processed 
dataset

training dataset
model training

initial model
post-processing

final model

domain adaptation
(distribution shift)

bias mitigation pre-processing
(unfairness)

data sanitization
(adversarial attacks)

disentangled representation
(lack of explainability)

domain robustness
(distribution shift)

bias mitigation in-processing
(unfairness)

smoothing/adversarial training
(adversarial attacks)

directly interpretable models
(lack of explainability)

bias mitigation post-processing
(unfairness)

patching
(adversarial attacks)

post hoc explanations
(lack of explainability)



Chapter 3
Safety
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“Not knowing the chance of mutually exclusive events 
and knowing the chance to be equal are two quite 
different states of knowledge.”

—Ronald A. Fisher, statistician and geneticist



Safety is the reduction of both aleatoric 
uncertainty (or risk) and epistemic 
uncertainty associated with harms.
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Harm
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An undesired outcome is 
a harm if its cost exceeds 
some threshold.

Image credit: https://www.nytimes.com/2023/02/15/well/live/personal-care-products-chemicals.html



Two types of uncertainty

Aleatoric

• Inherent randomness

• Quantified through probability theory

• Relates to basic performance attribute of 

trustworthiness

Epistemic

• Observer-dependent lack of knowledge

• Quantified through possibility theory

• Relates to reliability attribute of 

trustworthiness

Trustworthy Machine Learning 19
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PossibilityProbability

Properties of the probability function:

𝑃 𝐴 ≥ 0,

𝑃 Ω = 1, 

if 𝐴 and 𝐵 are disjoint events (they have no 
outcomes in common; 𝐴 ∩ 𝐵 =  ∅), then 
𝑃 𝐴 ∪ 𝐵 = 𝑃 𝐴 + 𝑃 𝐵 .

Properties of the possibility function:

Π ∅ = 0,

Π Ω = 1,

if 𝐴 and 𝐵 are disjoint events (they have no 
outcomes in common; 𝐴 ∩ 𝐵 =  ∅), then 

Π 𝐴 ∪ 𝐵 = max Π 𝐴 , Π 𝐵



Bayesian networks 
(credal networks in possibility theory)
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income
employ-

ment
gender

loan 
approval

A1 A2 A4

A3

𝑃 𝐴1, 𝐴2, 𝐴3, 𝐴4 = 𝑃 𝐴1 𝐴2 𝑃 𝐴2 𝑃 𝐴3 𝐴1, 𝐴2 𝑃 𝐴4

𝑃 𝐴1, … , 𝐴𝑛 = ෑ
𝑗=1

𝑛

𝑃 𝐴𝑗 𝑝𝑎 𝐴𝑗



Safety is the reduction of the probability 
of expected harms and the possibility of 
unexpected harms.

Use both in problem specification.
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Part 2 
Data
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Chapter 4
Data Modalities, Sources, and Biases
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“Garbage in, garbage out.”

—Wilf Hey, computer scientist at IBM
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biological 
sequences

software 
source 
code

natural 
language

videoaudioimagesmolecules
physical 

networks
social 

networks
event 

streams
time 

series

static 
tabular 

data

sequencessignals

semi-
structured

graphstabular

structured

data



Data sources Purposefully collected data

Includes surveys and censuses 

as well as the results of 

scientific experiments. These 

sources have the veneer of 

being well-designed and with 

minimal bias, but this might not 

always be the case.

Administrative data

Collected by organizations 

about their routine operations 

for non-statistical reasons. Can 

contain traces of historical 

prejudices. Might not exactly 

match the problem you are 

trying to solve. Usually correct.

Social data

Includes user-generated 

content, relationships between 

people, and traces of 

behavior. Might not match the 

problem. Reliability may be 

much less than administrative 

data. Marginalized populations 

may be invisible in some types 

of social data.

Crowdsourcing

In many crowdsourcing 

platforms, the workers are 

often low-skill individuals. They 

may be unfamiliar with the task 

or the social context of the 

task, which may yield biases in 

labels.  Their wages may be 

low, which raises ethical 

concerns.

Data augmentation

Performing various 

transformations of the given 

dataset may be used to 

increase data set size without 

actually collecting additional 

data. Another way is through 

generative machine learning 

trained on the given dataset.
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Different data sources 
are useful in 
addressing various 
problem 
specifications, but all 
have biases of one 
kind or another.
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space

raw data 
space

social bias
representation 

bias
data 

preparation bias

data poisoningtemporal bias

measurement sampling
data 

preparation
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Chapter 5
Privacy and consent
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“Data is the new oil.”

—Clive Humby, data science entrepreneur at dunnhumby



Data is power Data is a valuable commodity. 

It reveals a lot about human 
behavior at a gross level, but 
also about the behavior of 
individual people. 

Just like other natural 
resources, it can be extracted 
from the vulnerable without 
their consent and furthermore 
be exploited for their 
subjugation.

Trustworthy Machine Learning 29



Data used in machine learning is often fraught with power 
and consent issues because it is often repurposed. 

For example, many large-scale image datasets used for 
training computer vision models are scraped from the 
internet without explicit consent from the people who posted 
the images. 

Although there may be implicit consent through vehicles 
such as Creative Commons licenses, a lack of explicit 
consent can nevertheless be problematic. Sometimes 
copyright laws are violated in scraped and repurposed data.

Why does this happen? It is almost always due to system 
designers taking shortcuts to gather large datasets and show 
value quickly without giving thought to power and consent. 
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Problem owners and data scientists 
should not have any calculus to weigh 
issues of power and consent against 
convenience in data collection.

Image by Alan Warburton / © BBC / Better Images of AI / Virtual Human / CC-BY 4.0



Privacy is the ability of individuals to 
withhold information about themselves. 

Privacy is considered an essential human 
right in many value systems and legal 
frameworks.
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Name Department CT Value

Joseph Cipolla Trustworthy AI 12

Kweku Yefi Neurosymbolic AI 20

Anjali Singh AI Applications 35

Celia Sontag Compute Acceleration 31

Phaedra Paragios Software-Defined Architecture 19

Chunhua Chen Thermal Packaging 27

Organization CT Value

AI 12

AI 20

AI 35

Hybrid Cloud 31

Hybrid Cloud 19

Hybrid Cloud 27

Name Department CT Value

Joseph Cipolla Trustworthy AI 13.5

Kweku Yefi Neurosymbolic AI 12.8

Anjali Singh AI Applications 32.7

Celia Sontag Compute Acceleration 35.9

Phaedra Paragios Software-Defined Architecture 22.1

Chunhua Chen Thermal Packaging 13.4

identifier quasi-identifier

sensitive 
attribute

k-anonymity differential privacy
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differential 
privacy

data mining

syntactic 
anonymity

data 
publishing

privacy-
preservation

quasi-identifiers sensitive attributes quasi-identifiers sensitive attributes

quasi-identifiers sensitive attributesquasi-identifiers sensitive attributes

add noise

suppress, 
generalize, 
or shuffle



Demo
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https://aip360.res.ibm.com/data



Part 3 
Basic modeling
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Chapter 6
Detection theory
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“The predictability ceiling is often ignored in mainstream 
ML research. Every prediction problem has an upper 
bound for prediction—the Bayes-optimal performance. If 
you don't have a good sense of what it is for your problem, 
you are in the dark.”

—Mert Sabuncu, computer scientist at Cornell University



feature vector
random variable 𝑋
sample space 𝒳
sample value 𝑥

label
random variable 𝑌
sample space {0,1}
sample value 𝑦

likelihood functions
𝑝𝑋∣𝑌 𝑥 𝑦 = 0  
𝑝𝑋∣𝑌 𝑥 𝑦 = 1

decision function 
ො𝑦: 𝒳 → {0,1} 
predicts a label from the features

Trustworthy Machine Learning 38

𝑋 𝑌

𝑌𝑋|𝑌

𝑦 = 0 negative
𝑦 = 1 positive
𝑝0 = 𝑃 𝑌 = 0  
𝑝1 = 𝑃 𝑌 = 1 = 1 − 𝑝0 



Confusion matrix
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𝑌 =  1 𝑌 =  0

ො𝑦 𝑋 = 1 TP FP

ො𝑦 𝑋 = 0 FN TN



Confusion matrix
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𝑃 ො𝑦 𝑋 𝑌 𝑌 =  1 𝑌 =  0

ො𝑦 𝑋 = 1 𝑝TP 𝑝FP

ො𝑦 𝑋 = 0 𝑝FN 𝑝TN



“Reversed” confusion matrix
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𝑃 𝑌 ො𝑦 𝑋 𝑌 =  1 𝑌 =  0

ො𝑦 𝑋 = 1 𝑝PPV 𝑝FDR

ො𝑦 𝑋 = 0 𝑝FOR 𝑝NPV



The Bayes risk and the optimal 
decision function
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𝑅 = 𝑐10 − 𝑐00 𝑝0𝑝𝐹𝑃 + 𝑐01 − 𝑐11 𝑝1𝑝𝐹𝑁 + 𝑐00𝑝0 + 𝑐11𝑝1

ො𝑦∗ ⋅ = arg min
ො𝑦 ⋅

𝐸 𝑐 𝑌, ො𝑦 𝑋

𝑅 = 𝑐10𝑝0𝑝𝐹𝑃 + 𝑐01𝑝1𝑝𝐹𝑁



The best you can ever do
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ො𝑦∗ ⋅ = ቊ
0, Λ 𝑥 ≤ 𝜂

1, Λ 𝑥 > 𝜂

Λ 𝑥 =
𝑝𝑋∣𝑌 𝑥 𝑌 = 1

𝑝𝑋∣𝑌 𝑥 𝑌 = 0

𝜂 =
𝑐10𝑝0

𝑐01𝑝1

likelihood ratio test

likelihood ratio

threshold
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false positive rate
false negative rate

error rate
accuracy

Bayes risk
Bayesian detection

false discovery rate
false omission rate

F1-score

receiver operating characteristic
recall-precision curve
area under the curve

Brier score
calibration curve

𝑝FP

𝑝
T

P

0 1

1

𝑠

𝑃
(𝑌

 =
 1

)

0 1

1



Chapter 7
Supervised learning
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“My experience in industry strongly confirms that deep 
learning is a narrow sliver of methods needed for solving 
complex automated decision making problems.”

—Zoubin Ghahramani, chief scientist at Uber



feature vector
sample space 𝒳
sample value 𝑥

label
sample space {0,1}
sample value 𝑦

training data
𝑥1, 𝑦1 , 𝑥2, 𝑦2 , … , 𝑥𝑛, 𝑦𝑛  

decision function 
ො𝑦: 𝒳 → {0,1} 
predicts a label from the features

Trustworthy Machine Learning 46

𝑋 𝑌

𝑌𝑋, 𝑌

𝑦 = 0 negative
𝑦 = 1 positive
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𝑥 1

𝑥
2

ො𝑦 = 1 

ො𝑦 = 1 

ො𝑦 = 0 

decision 
boundary

ො𝑦 𝑥 = ቊ
0, Λ 𝑥 ≤ 𝜂

1, Λ 𝑥 > 𝜂

ො𝑦 𝑥  fit on training data

vs.
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naïve Bayes 

structural risk 
minimization

empirical risk 
minimization

risk 
minimization

nonparametricparametric

plug-in

supervised 
learning

k-nearest 
neighbor

margin-based 
methods

neural 
networks

decision 
trees and 

forests

quadratic 
discriminant 

analysis

linear 
discriminant 

analysis
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Risk minimizationPlug-in

ො𝑦 𝑥 = ቊ
0, Λ 𝑥 ≤ 𝜂

1, Λ 𝑥 > 𝜂

estimate the likelihood functions and the 
prior probabilities from the training data 
and plug them into the Λ and 𝜂 of the 
Bayes optimal decision function

𝑅 = 𝑐10𝑝0𝑝𝐹𝑃 + 𝑐01𝑝1𝑝𝐹𝑁

𝑅emp =
1

𝑛


𝑗=1

𝑛

𝐿 𝑦𝑗 , ො𝑦 𝑥𝑗

minimize the empirical risk instead of the 
Bayes risk (with regularization to prevent 
overfitting)
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No free lunch. There is no one 
single machine learning method 
that is best for all datasets.

https://www.pexels.com/photo/a-lunch-meal-served-in-a-restaurant-16488178/
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Inductive biases, hypothesis spaces ℱ, 
and domains of competence



52Trustworthy Machine Learning

Training data and deployment data

𝑝
E

 o
r 

𝑅
e

m
p

0 ℱ1 ℱ6ℱ5ℱ4ℱ3ℱ2

empirical risk can go to zero 
with increasing complexity

lower complexity
(underfitting)

higher complexity
(overfitting)

generalization error 
has a sweet spot
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Bayesian 
methods

separate aleatoric 
and epistemic 

uncertainty

estimate 
uncertainty

mitigate 
miscalibration

total predictive 
uncertainty

uncertainty 
quantification

ensemble 
methods

isotonic 
regression

Platt scaling
infinitesimal 

jackknife
jackknife



Demo
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https://uq360.res.ibm.com/demo/0



Chapter 8
Causal modeling
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“While probabilities encode our beliefs about a static 
world, causality tells us whether and how probabilities 
change when the world changes, be it by intervention or 
by act of imagination.”

—Judea Pearl, computer scientist at University of 
California, Los Angeles



Examining the associations and correlations in a trained 
machine learning model may yield some insights, but 
misses something very important: causality! 

When you want to understand the effect of interventions 
(specific actions that are undertaken) on outcomes, you 
have to do more than machine learning, you have to 
perform causal modeling. 

Cause and effect are central to understanding the world, 
but standard supervised learning is not a method for 
obtaining them.

56Trustworthy Machine Learning



If doing something makes something else 
happen, then the something we did is a 
cause of the something that happened. 

The key word is do. Causation requires doing. 

The actions that are done are known as 
interventions or treatments.
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All hell can break loose Using predictive models to 
form causal conclusions can 
lead to great harms. 

Changes to input features of 
predictive models do not 
necessarily lead to desired 
changes of output labels.
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Structural causal model

counseling 
sessions

anxiety stable 
housing

wages

used car

child care

𝑃 𝑌 𝑑𝑜 𝑡 =  𝑓𝑌 𝑡, 𝑛𝑜𝑖𝑠𝑒𝑌

causal graph
structural equation

𝜏 = 𝐸 𝑌 𝑑𝑜 𝑡 = 1 – 𝐸 𝑌 𝑑𝑜 𝑡 = 0

average treatment effect
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Observational dataInterventional data

Data from a purposefully designed 
experiment such as a randomized 
controlled trial

Gold standard

Often not possible, practically or ethically

Data not from a purposefully designed 
experiment

Common case

“Those who can’t do, assume”
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treatment 
models

causal 
inference

functional 
model-based 

methods

conditional 
independence-
based methods

causal 
discovery

causal modeling from 
observational data

outcome 
models
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Functional-model based causal discovery 
(additive noise model assumption)

𝑡

𝑦

0

𝑡
𝑦

0

all the 
heights are 
the same all the 

heights are 
different

𝑃 𝑌 𝑑𝑜 𝑡 =  𝑓𝑌 𝑡 + 𝑛𝑜𝑖𝑠𝑒𝑌
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evaluate 
assumptions

specify 
causal method

train model

specify machine 
learning method

return average 
treatment effect assumptions are 

met

Treatment effect estimation

treatment model
𝑡1, 𝑥1 , … , 𝑡𝑛, 𝑥𝑛  to learn 𝑃 𝑇 𝑋 = 𝑥

outcome model
𝑡1, 𝑥1, 𝑦1 , … , 𝑡𝑛, 𝑥𝑛, 𝑦𝑛  to learn 

𝐸 𝑌 𝑇 = 1, 𝑋 = 𝑥  and 𝐸 𝑌 𝑇 = 0, 𝑋 = 𝑥



Example
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https://github.com/BiomedSciAI/causallib/blob/master/examples/lalonde.ipynb



Part 4 
Reliability
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A trustworthy machine learning 
system is one that has 
sufficient:

66

1

basic 

performance

2

reliability

3

human 

interaction

4

aligned 

purpose
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Two types of uncertainty and the 

two components of safety

Aleatoric

• Inherent randomness

• Quantified through probability theory

• Relates to basic performance attribute of 

trustworthiness

Epistemic

• Observer-dependent lack of knowledge

• Quantified through possibility theory

• Relates to reliability attribute of 

trustworthiness
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Uncertainty in modeling If you don’t have the 
information to select a good 
inductive bias and hypothesis 
space, but you could obtain it 
in principle, then you have 
epistemic uncertainty.
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Rashomon effect or underspecification

models in the hypothesis space

competent models
(Rashomon set)

reliable models All models in the Rashomon set 
have the possibility of being good 
models with respect to aleatoric 
uncertainty or risk, but have 
different ways of generalizing.

Some of the models are unreliable 
because they take shortcuts and 
generalize based on spurious 
characteristics in the data. They are 
not causal.

Try to include more constraints in 
the problem specification.



If you don’t have enough 
high-quality data to train 
the classifier even if you 
have the perfect 
hypothesis space, you have 
epistemic uncertainty.

The main way to reduce 
epistemic uncertainty is 
data augmentation.

Uncertainty in data
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Chapter 9
Distribution shift
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“All bets are off if there is a distribution shift when the 
model is deployed. (There's always a distribution shift.)”

—Arvind Narayanan, computer scientist at Princeton 
University



The big lie of machine 
learning

The core assumption that 
training data and testing data 
is independent and identically 
distributed (i.i.d.). 

This is almost never true in the 
real world, where there tends 
to be some sort of difference 
in the probability distributions 
of the training data and the 
data encountered during the 
model’s deployment.
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Distribution shift is the difference in the 
probability distribution between training 
data and data encountered during 
deployment.

A competent model that achieves high accuracy when tested 
through cross-validation might not maintain that competence in 
the real world.
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Prior probability shift, also known as label 
shift, is when the label distributions are 
different but the features given the labels 
are the same: 

𝑝𝑌
𝑡𝑟𝑎𝑖𝑛

𝑦 ≠ 𝑝𝑌
𝑑𝑒𝑝𝑙𝑜𝑦

𝑦  and 

𝑝𝑋∣𝑌
𝑡𝑟𝑎𝑖𝑛

𝑥 𝑦 = 𝑝𝑋∣𝑌
𝑑𝑒𝑝𝑙𝑜𝑦

𝑥 𝑦 .
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Covariate shift is when the feature 
distributions are different but the labels 
given the features are the same: 

𝑝𝑋
𝑡𝑟𝑎𝑖𝑛

𝑥 ≠ 𝑝𝑋
𝑑𝑒𝑝𝑙𝑜𝑦

𝑥  and 

𝑝𝑌∣𝑋
𝑡𝑟𝑎𝑖𝑛

𝑦 𝑥 = 𝑝𝑌∣𝑋
𝑑𝑒𝑝𝑙𝑜𝑦

𝑦 𝑥 . 
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Concept drift is when the labels given the features are different 
but the features are the same: 

𝑝𝑌∣𝑋
𝑡𝑟𝑎𝑖𝑛

𝑦 𝑥 ≠ 𝑝𝑌∣𝑋
𝑑𝑒𝑝𝑙𝑜𝑦

𝑦 𝑥  and 𝑝𝑋
𝑡𝑟𝑎𝑖𝑛

𝑥 =

𝑝𝑋
𝑑𝑒𝑝𝑙𝑜𝑦

𝑥 , 

or when the features given the labels are different but the 
labels are the same: 

𝑝𝑋∣𝑌
𝑡𝑟𝑎𝑖𝑛

𝑥 𝑦 ≠ 𝑝𝑋∣𝑌
𝑑𝑒𝑝𝑙𝑜𝑦

𝑥 𝑦  and 𝑝𝑌
𝑡𝑟𝑎𝑖𝑛

𝑦 =

𝑝𝑌
𝑑𝑒𝑝𝑙𝑜𝑦

𝑦 .
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What does changing the 
environment in which the data 
was measured and sampled do 
to the features and label?
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X Y

E

prior probability shift

X Y

E

covariate shift

X Y

E

concept drift

X Y

E

concept drift
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Type
What 

Changes
What is the Same Source Threatens Learning Problem

prior 
probability 

shift
𝑌 𝑋 ∣ 𝑌 sampling

external 
validity

anticausal 
learning

covariate shift 𝑋 𝑌 ∣ 𝑋 sampling
external 
validity

causal learning

concept drift

𝑌 ∣ 𝑋 𝑋
measure-

ment
construct 

validity

causal learning

𝑋 ∣ 𝑌 𝑌
anticausal 
learning



Nuanced point. When you have prior probability shift, 
the label causes the feature and when you have 
covariate shift, the features cause the label. This is 
weird to think about, so let’s slow down and work 
through this concept.
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In the first case, 𝑌 → 𝑋, the label is known as an 
intrinsic label and the machine learning problem is 
known as anticausal learning. A prototypical example 
is a disease with a known pathogen like malaria that 
causes specific symptoms like chills, fatigue, and 
fever. The label of a patient having a disease is 
intrinsic because it is a basic property of the infected 
patient, which then causes the observed features.
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In the second case, 𝑋 → 𝑌, the label is known as an 
extrinsic label and the machine learning problem is 
known as causal learning. A prototypical example of 
this case is a syndrome, a collection of symptoms 
such as Asperger’s that isn’t tied to a pathogen. The 
label is just a label to describe the symptoms like 
compulsive behavior and poor coordination; it 
doesn’t cause the symptoms.
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Normally, in the practice of doing supervised 
machine learning, the distinction between anticausal 
and causal learning is just a curiosity, but it becomes 
important when figuring out what to do to mitigate 
the effect of distribution shift.
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Mitigating distribution shift

Type
Where in the 

Pipeline
Known Deployment 

Environment

Approach for 
Prior Probability and 

Covariate Shifts

Approach for 
Concept Drift

adaptation
pre-

processing
yes sample weights obtain labels

robustness model training no min-max formulation
invariant risk 
minimization
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Adaptation to prior probability shift

1. Train a classifier on one random split of the training data to get ො𝑦 𝑡𝑟𝑎𝑖𝑛 𝑥  and compute the classifier’s 
confusion matrix on another random split of the training data:

 𝐶 =
𝑝𝑇𝑃 𝑝𝐹𝑃

𝑝𝐹𝑁 𝑝𝑇𝑁
.

2. Run the unlabeled features of the deployment data through the classifier: ො𝑦 𝑡𝑟𝑎𝑖𝑛 𝑋 𝑑𝑒𝑝𝑙𝑜𝑦  and 

compute the probabilities of positives and negatives in the deployment data as a vector:

𝑎 =
𝑃 ො𝑦 𝑡𝑟𝑎𝑖𝑛 𝑋 𝑑𝑒𝑝𝑙𝑜𝑦 = 1

𝑃 ො𝑦 𝑡𝑟𝑎𝑖𝑛 𝑋 𝑑𝑒𝑝𝑙𝑜𝑦 = 0
.

3. Compute weights 𝑤 = 𝐶−1𝑎. This is a vector of length two.

4. Apply the weights to the training data points in the first random split and retrain the classifier. The first 
of the two weights multiplies the loss function of the training data points with label 1. The second of the 
two weights multiplies the loss function of the training data points with label 0.



89Trustworthy Machine Learning

Adaptation to covariate shift

ො𝑦 ∙ = arg min
𝑓∈ℱ

1

𝑛


𝑗=1

𝑛

𝑤𝑗𝐿 𝑦𝑗 , 𝑓 𝑥𝑗

𝑤𝑗 = 𝑝𝑋
𝑑𝑒𝑝𝑙𝑜𝑦 Τ𝑥𝑗 𝑝

𝑋

𝑡𝑟𝑎𝑖𝑛
𝑥𝑗

train a classifier for this
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Adaptation to concept drift

Need labeled data from 
deployment environment.
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Robustness to prior probability shift

arg min
𝑝0

𝑡𝑟𝑎𝑖𝑛
max

𝑝0
𝑑𝑒𝑝𝑙𝑜𝑦

𝑅 𝑝0
𝑑𝑒𝑝𝑙𝑜𝑦

, 𝑝0
𝑡𝑟𝑎𝑖𝑛

𝑅 𝑝0
𝑑𝑒𝑝𝑙𝑜𝑦

, 𝑝0
𝑡𝑟𝑎𝑖𝑛

= 𝑐10𝑝0
𝑑𝑒𝑝𝑙𝑜𝑦

𝑝𝐹𝑃 𝑝0
𝑡𝑟𝑎𝑖𝑛

+ 𝑐01𝑝1
𝑑𝑒𝑝𝑙𝑜𝑦

𝑝𝐹𝑁 𝑝0
𝑡𝑟𝑎𝑖𝑛

min-max formulation

mismatched Bayes risk
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Robustness to covariate shift

min-max formulation arg min
𝑓∈ℱ

max
𝑤

1

𝑛


𝑗=1

𝑛

𝑤𝑗𝐿 𝑦𝑗 , 𝑓 𝑥𝑗

same importance weights as in adaptation
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Robustness to concept drift

Assume features split into two types: 

1. causal or stable features

2. spurious features

Don’t know which ones are which. 

The causal features capture the intrinsic 
parts of the relationship between 
features and labels, and are the same 
set of features in different environments. 
This set of features is invariant across 
the environments. 

Spurious features might be predictive in 
one environment or a few environments, 
but not universally so across 
environments. 

ො𝑦 ∙ = arg min
𝑓∈ℱ



𝑒∈ℰ

1

𝑛𝑒


𝑗=1

𝑛𝑒

𝐿 𝑦𝑗
(𝑒)

, 𝑓 𝑥𝑗
(𝑒)

.

such that 𝑓 ∈ arg min
𝑔∈ℱ

1

𝑛𝑒


𝑗=1

𝑛𝑒

𝐿 𝑦𝑗
(𝑒)

, 𝑔 𝑥𝑗
(𝑒)

 for all 𝑒 ∈ ℰ

invariant risk minimization

extra specification or constraint to 
exclude some of the Rashomon set

works for anticausal 
learning formulations



Chapter 10
Fairness
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“Most of this work is narrow in scope, focusing on fine-
tuning specific models, making datasets more 
inclusive/representative, and ‘debiasing’ datasets. 
Although such work can constitute part of the remedy, a 
fundamentally equitable path must examine the wider 
picture, such as unquestioned or intuitive assumptions in 
datasets, current and historical injustices, and power 
asymmetries.”

—Abeba Birhane, cognitive scientist at University College 
Dublin

“If humans didn’t behave the way we do there would be 
no behavior data to correct. The training data is society.”

— M. C. Hammer, musician and technology consultant



Fairness and justice are almost 
synonymous, and are political. 

There are several kinds of justice, 
including (1) distributive justice, (2) 
procedural justice, (3) restorative justice, 
and (4) retributive justice.
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Distributive justice is 
equality in what people 
receive—the outcomes.

Procedural justice is 
sameness in the way it is 
decided what people 
receive.

Restorative justice repairs 
a harm.

Retributive justice seeks to 
punish wrongdoers.

Trustworthy Machine Learning 96



Unfairness is when an allocation decision 
gives a systematic advantage to certain 
privileged groups and individuals and a 
systematic disadvantage to certain 
unprivileged groups and individuals. 

Privileged groups and individuals are defined to be those who 
have historically been more likely to receive the favorable label.
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Privileged and unprivileged groups are 
delineated by protected attributes such 
as race, ethnicity, gender, religion, and 
age. 

There is no one universal set of protected 
attributes.
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Two types of fairness

Group fairness

• The average classifier behavior should be the 

same across groups defined by protected 

attributes

Individual fairness

• Individuals similar in their features should 

receive similar model predictions
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Representation bias Data preparation biasSocial biasExample from US health 

care system

Trustworthy Machine Learning 101

Utilization vs. infirmity Using data only from 

men in Boston

Summing in-patient, 

out-patient, and 

emergency room costs



Differences between 
distribution shift and fairness

Access to the construct space

You can get data from the 

construct space in distribution 

shift scenarios. Maybe not 

immediately, but if you wait, 

collect, and label data from the 

deployment environment, you 

will have data reflecting the 

construct space. 

You never have access to the 

construct space in fairness 

settings. The construct space 

reflects a perfect egalitarian 

world that does not exist in real 

life, so you can’t get data from 

it.

Specification of what is sought

In distribution shift, there is no 

further specification beyond 

just trying to match the shifted 

distribution. 

In fairness, there are precise 

policy-driven notions and 

quantitative criteria that define 

the desired state of data and/or 

models that are not dependent 

on the data distribution you 

have.
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Group fairness metrics

Type
Statistical 

Relationship
Fairness Metric

Can Be A 
Dataset Metric?

Social Bias in 
Measurement

Favorable Label

independence 𝑌 ⫫ 𝑍
statistical parity 

difference
yes yes

assistive or non-
punitive

separation 𝑌 ⫫ 𝑍 ∣ 𝑌
average odds 

difference
no no assistive

sufficiency 
(calibration)

𝑌 ⫫ 𝑍 ∣ 𝑌
average predictive 

value difference
no no non-punitive



statistical parity difference = 𝑃 ො𝑦 𝑋 = fav 𝑍 = unpr − 𝑃 ො𝑦 𝑋 = fav 𝑍 = priv
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predicted favorable label

3/10 selectio
n

 rate

predicted unfavorable label

privileged group

unprivileged group

4/10

−

=

−0.1

statistical 
parity 

difference



average odds difference 

= 1
2

𝑃 ො𝑦 𝑋 = fav 𝑌 = fav, 𝑍 = unpr − 𝑃 ො𝑦 𝑋 = fav 𝑌 = fav, 𝑍 = priv

+ 1
2

𝑃 ො𝑦 𝑋 = fav 𝑌 = unf, 𝑍 = unpr − 𝑃 ො𝑦 𝑋 = fav 𝑌 = unf, 𝑍 = priv
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predicted favorable label

2/4
tru

e favo
rab

le rate

predicted unfavorable label

privileged group

unprivileged group

3/4

−

=

−0.25

true favorable | false favorable true unfavorable | false unfavorable

true favorable | false favorable true unfavorable | false unfavorable

1/6

false favo
rab

le rate

1/6

−

=

0.00+

2
=−0.125

average odds 
difference



average predictive value difference 

= 1
2

𝑃 𝑌 = fav ො𝑦 𝑋 = fav, 𝑍 = unpr − 𝑃 𝑌 = fav ො𝑦 𝑋 = fav, 𝑍 = priv

+ 1
2

𝑃 𝑌 = fav ො𝑦 𝑋 = unf, 𝑍 = unpr − 𝑃 𝑌 = fav ො𝑦 𝑋 = unf, 𝑍 = priv
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predicted favorable label

2/3
p

o
sitive p

red
ictive valu

e

predicted unfavorable label

privileged group

unprivileged group

3/4

−

=

−0.08

true favorable | false favorable true unfavorable | false unfavorable

true favorable | false favorable true unfavorable | false unfavorable

2/7

false o
m

issio
n

 rate

1/6

−

=

0.12+

2
= 0.02

average 
predictive value 

difference
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Individual fairness

consistency = 1 −
1

𝑛


𝑗=1

𝑛

ො𝑦𝑗 −
1

𝑘


𝑗′∈𝒩𝑘 𝑥𝑗

ො𝑦𝑗′

𝑑𝑜 𝑍

if 𝑌 remains the same, 
counterfactual fairness

check using average 
treatment effect estimation
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bias mitigation 
pre-processing

pre-processed 
dataset

training 
dataset

bias mitigation 
in-processing

initial model

dataset 
fairness metric

classifier 
fairness metric

bias mitigation 
post-processing

final model



Example methods

𝑤𝑗 =
𝑝𝑌 𝑦𝑗 𝑝𝑍 𝑧𝑗

𝑝𝑌,𝑍 𝑦𝑗 , 𝑧𝑗

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑓∈ℱ

1

𝑛


𝑗=1

𝑛

𝐿 𝑦𝑗 , 𝑓 𝑥𝑗 + 𝜆𝐽 𝑓
Flip predictions 𝑌 to 

meet the group fairness 

metric you desire.

Bias mitigation pre-processing Bias mitigation in-processing Bias mitigation post-processing
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Don’t drop protected 
attributes – other 
features can recreate 
the information. 

Aim for independence 
between label and 
protected attribute.



Demo
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Measuring classification accuracy on data from the prepared 
data space, which already contains social bias, representation 
bias, and data preparation bias is not the right thing to do. 

Just like you should measure performance of distribution shift 
adaptation on data from the new environment—its construct 
space, you should measure accuracy after bias mitigation in its 
construct space where there is no unfairness. 

There is a tradeoff between fairness and accuracy measured in 
the prepared data space, but importantly there is no tradeoff 
between accuracy and fairness in the construct space.
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Have we too easily swept the important considerations of 
algorithmic fairness under the rug of mathematics? Yes and 
no. If you have truly thought through the different sources of 
inequity arising throughout the machine learning lifecycle 
utilizing a panel of diverse voices, then applying the 
quantitative metrics and mitigation algorithms is actually 
pretty straightforward. It is straightforward because of the 
hard work you’ve done before getting to the modeling phase 
of the lifecycle and you should feel confident in going 
forward. If you have not done the hard work earlier in the 
lifecycle, blindly applying bias mitigation algorithms might 
not reduce harms and can even exacerbate them. So don’t 
take shortcuts.
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Chapter 11
Adversarial robustness
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“In my view, similar to car model development and 
manufacturing, a comprehensive ‘in-house collision test’ 
for different adversarial threats on an AI model should be 
the new norm to practice to better understand and 
mitigate potential security risks.”

—Pin-Yu Chen, computer scientist at IBM Research



Adversaries are people trying to achieve 
their own goals to the detriment of the 
goals of the system designers, usually in a 
secretive way.

114Trustworthy Machine Learning



115Trustworthy Machine Learning

data poisoning evasion
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open-box
strict 

closed-box

evasion

logic 
corruption

data injection

poisoning

adversarial 
attacks

misclassification

data 
modification

adaptive 
closed-box

non-adaptive
closed-box

confidence 
reduction

targeted 
misclassification

source/target 
misclassification

target

capability

goal
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data sanitization pre-processed 
dataset

training 
dataset

smoothing
initial model

patching
final model

Poisoning defenses
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adversarial training

frequency domaininput domain

denoising

defenses against evasion 
attacks

latent domain

ො𝑦 ⋅ = arg min
𝑓∈ℱ


𝑗=1

𝑛

max
𝛿𝑗 ≤𝜖

𝐿 𝑦𝑗 , 𝑓 𝑥𝑗 + 𝛿𝑗



Demo
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Part 5 
Interaction
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A trustworthy machine learning 
system is one that has 
sufficient:

122

1

basic 

performance

2

reliability

3

human 

interaction

4

aligned 

purpose

Trustworthy Machine Learning



Chapter 12
Interpretability and explainability
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“If we don’t know what is happening in the black box, we 
can’t fix its mistakes to make a better model and a better 
world.”

—Aparna Dhinakaran, chief product officer at Arize AI

“Simplicity is not so simple.”

—Dmitry Malioutov, computer scientist at IBM Research



Interpretability of machine learning 
models is the aim to let people 
understand how the machine makes its 
predictions. 

It is a challenge because many of the machine learning 
approaches in Chapter 7 are not easy for people to understand 
since they have complicated functional forms.
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Interpretability and explainability are a 
form of interaction between the machine 
and a human, specifically communication 
from the machine to the human, that 
allow the machine and human to 
collaborate in decision making. 

The predicted label 𝑌 is not enough to communicate how the 
machine makes its predictions. An explanation is also needed.
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Last mile problem The machine is the transmitter 
of information and the human 
is the receiver or consumer of 
that information. 

The communication process 
has to overcome human 
cognitive biases—the 
limitations that people have in 
receiving information.
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No single kind of 
explanation appeals to all 
different potential 
consumers of explanations
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Persona Example Goal

decision maker appraiser, credit officer
(1) roughly understand the model to gain trust;

(2) understand the predictions to combine with their own 
information to make decisions

affected user loan applicant
understand the prediction for their own input data point 

and what they can do to change the outcome

regulator
model validator, 

government official
ensure the model is safe and compliant

data scientist development team member improve the model’s performance



Exact vs. 
approximate

Feature- vs. 
sample-based

Local vs. 
global

Three dichotomies of 

explanations
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Is the consumer 

interested in 

understanding the 

machine predictions for 

individual input data 

points or in 

understanding the 

model overall.

Should the explanation 

be completely faithful to 

the underlying model or 

is some level of 

approximation 

allowable.

Is the explanation given 

as a statement about 

the features or is it given 

by pointing to other data 

points in their entirety.
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disentangled 
representation

pre-processed 
dataset

training dataset

directly 
interpretable model

initial model post hoc 
explanation

final model

(for feature-based 
explanations, the 
features have to be 
meaningful)
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Dichotomy 1 Dichotomy 2 Dichotomy 3 Persona Example Method

local exact feature-based affected user contrastive explanations method

local exact sample-based regulator k-nearest neighbor

local approximate feature-based decision maker LIME, SHAP, saliency map

local approximate sample-based decision maker prototype

global exact feature-based regulator
decision tree, Boolean rule set, 
logistic regression, GAM, GLRM

global exact sample-based regulator deletion diagnostics

global approximate feature-based decision maker
distillation, SRatio, partial 

dependence plot

global approximate sample-based
regulator and 

decision maker
influence function



Demo
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https://aix360.res.ibm.com/data
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average 
probability

the difference between the 
partial dependence and the 
average probability is the 
SHAP value

Partial dependence 𝑃 𝑌 = 1 𝑋 𝑖 = 𝑥 𝑖
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Category Consumers Tasks
application-grounded evaluation true persona members real task
human-grounded evaluation generic people simple task
functionally-grounded evaluation none proxy task

Evaluating interpretability does not yield the same sort of quantitative metrics as 
in Part 3 for distributional robustness, fairness, and adversarial robustness. 
Ideally, you want to show explanations to a large set of consumers from the 
relevant persona performing the task the model is for and get their judgements.



Chapter 13
Transparency
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“The full cycle of a machine learning project is not just 
modeling. It is finding the right data, deploying it, 
monitoring it, feeding data back [into the model], showing 
safety—doing all the things that need to be done [for a 
model] to be deployed. [That goes] beyond doing well on 
the test set, which fortunately or unfortunately is what we 
in machine learning are great at.”

—Andrew Ng, computer scientist at Stanford University

“We really need standards for what an audit is.”

—Rumman Chowdhury, machine learning ethicist at 
Twitter



Transparency involves the 
communication of qualitative information 
and quantitative test results from 
throughout the lifecycle.

Transparency goes beyond explainability because it is focused on 
model performance metrics and their uncertainty, various pieces 
of information about the training data, and the suggested uses 
and possible misuses of the model. All of these pieces of 
information are known as facts.
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One size does not fit all Various consumers of  
transparent reporting are 
seeking different facts and 
level of detail. 

Therefore, first run a small 
design exercise to understand 
which facts and details are 
relevant for the consumer.

The artifact that ultimately 
presents facts to a consumer 
is known as a factsheet. 
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Testing machine learning 
systems is different from 
testing other kinds of 
software systems.

Machine learning testing 
suffers from the oracle 
problem: not knowing what 
the correct answer is 
supposed to be for a given 
input.
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Metamorphic relations gets 
around the problem by not looking 
at a single input data point, but by 
looking at two or more variations 
that should yield the same output.



Testing and transparency for 

trustworthy machine learning

Three additional factors Test for dimensions beyond 

accuracy, such as fairness, 

robustness, and explainability.

Push the system to its limits so that 

you are not only testing average 

cases, but also covering edge cases.

Quantify uncertainty around the test 

results.
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Example
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https://aifs360.res.ibm.com/examples/hmda



Chapter 14
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“We need to have more conversations where we're doing 
this translation between policy, world outcome impact, 
what we care about and then all the math and data and 
tech stuff is in the back end trying to achieve these 
things.”

—Rayid Ghani, machine learning and public policy 
researcher at Carnegie Mellon University

“There is scientific research that can be undertaken to 
actually understand how to go from these values that we 
all agree on to embedding them into the AI system that’s 
working with humans.”

—Francesca Rossi, AI ethics global leader at IBM



Values are fundamental beliefs that guide 
actions. They indicate the importance of 
various things and actions to a person or 
group of people, and determine the best 
ways to live and behave.

Embedding values in the machine 
learning system is value alignment.
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Two parts of value alignment

Technical

How to encode and elicit values in such a way that 

machine learning systems can access them and 

behave accordingly.

Subject of this chapter.

Normative

What the actual values are. 

(The word normative refers to norms in the social 

rather than mathematical sense: standards or 

principles of right action.)

Part 6 delves into the values themselves. 
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4 levels of value alignment:
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1

Should you work 

on this problem?

2

Which pillars of 

trustworthiness 

are of concern?

3

What are the 

appropriate 

metrics for those 

pillars of 

trustworthiness?

4

What are 

acceptable ranges 

of the metric 

values?
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Should you work on this problem?

1. Disinformation: the system helps subvert the truth at a large scale

2. Addiction: the system keeps users engaged with it beyond what is good for them

3. Economic inequality: the system contributes to income and wealth inequity by serving 

only well-heeled users or by eliminating low-income jobs

4. Algorithmic bias: the system amplifies social biases

5. Surveillance state: the system enables repression of dissent

6. Loss of data control: the system causes people to lose control of their own personal data 

and any monetization it might lead to

7. Surreptitious: the system does things that users don’t know about

8. Hate and crime: the system makes bullying, stalking, fraud, or theft easier
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Formalism of CP-nets
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Which pillars of trustworthiness 
are of concern?

1. Fairness

2. Explainability

3. Uncertainty quantification

4. Distributional robustness

5. Adversarial robustness

6. Privacy

Trustworthy Machine Learning 150



Which pillars of trustworthiness 
are of concern?

1. Disadvantage (no, yes): the decisions have the possibility of giving systematic 

disadvantage to certain groups or individuals

2. Human-in-the-loop (no, yes): the system predictions support a human decisionmaker

3. Regulator (no, yes): regulators (broadly-construed) audit the model

4. Recourse (no, yes): affected users of the system have the ability to challenge the decision 

they receive

5. Retraining (no, yes): the model is retrained frequently to match the time scale of 

distribution shift

6. People data (not about people, about people but not SPI, SPI): the system may use data 

about people which may be sensitive personal information (SPI)

7. Security (external, internal and not secure, secure): the data, model interface, or software 

code are available either externally or only internally, and may be kept highly secured
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Formalism of CP-nets
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Formalism of CP-nets
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What are the appropriate metrics for 
those pillars of trustworthiness?
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Type
Statistical 

Relationship
Fairness Metric

Social Bias in 
Measurement

Favorable Label

independence 𝑌 ⫫ 𝑍
statistical parity 

difference
yes

assistive or non-
punitive

separation 𝑌 ⫫ 𝑍 ∣ 𝑌 average odds difference no assistive

sufficiency 
(calibration)

𝑌 ⫫ 𝑍 ∣ 𝑌
average predictive value 

difference
no non-punitive

– Example based on worldviews for fairness metrics



What are the appropriate metrics 
for those pillars of trustworthiness?

– Complementary: Performance metric elicitation by pairwise comparison of confusion matrices
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Image credit: H. Shen, H. Jin, Á. A. Cabrera, A. Perer, H. Zhu, and J. I. Hong. “Designing Alternative Representations of Confusion Matrices to Support Non-Expert 
Public Understanding of Algorithm Performance.” In: Proceedings of the ACM on Human-Computer Interaction 4.CSCW2 (Oct. 2020), p. 153.



What are acceptable ranges of the 
metric values?
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–The first three levels of elicitation do not 

require considering more than one 

dimension of trustworthiness at a time

• For eliciting acceptable ranges, need to 

consider tradeoffs and non-tradeoffs

• Only choose ranges that are feasible 

–Open area of research

feasible



What are acceptable ranges of the 
metric values?

Trustworthy Machine Learning 157

– Create many different models and visualize the space of what’s possible (parallel coordinate plots)



What are acceptable ranges of the 
metric values?
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– Use variations on trolley problems

predicted favorable label predicted unfavorable label

privileged group

unprivileged group

predicted favorable label predicted unfavorable label

privileged group

unprivileged group

scenario 1

scenario 2

adversarial 
example
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Specification gaming 
or reward hacking



Eliciting from a group
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–Eliciting values from a group of stakeholders 

(including affected users from vulnerable 

communities)

–Aggregation methods for CP-nets and 

pairwise comparisons all boil down to voting

–Minority voices may raise important points 

that shouldn’t be drowned out by the majority

–Facilitated participatory design sessions
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Control or governance 
view of value alignment

value 
elicitation

machine 
learning 
model

values data 
scientists

modeling

facts

misalignment

+
−

testing



Part 6 
Purpose
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A trustworthy machine learning 
system is one that has 
sufficient:

163

1

basic 

performance

2

reliability

3

human 

interaction

4

aligned 

purpose
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Chapter 15
Ethics principles
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“I think we're in the third era, which is the age of 
integrated impact where we have created social impact 
that is part of the core value and function of the company 
overall.”

—Erin Reilly, chief social impact officer at Twilio

“A truly ethical stance on AI requires us to focus on 
augmentation, localized context and inclusion, three 
goals that are antithetical to the values justified by late-
stage capitalism.”

—danah boyd, president of Data & Society Research 
Institute
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One of the most effective leverage points of a complex system 
on which to intervene is the paradigm

value 
elicitation

machine 
learning 
model

values data 
scientists

modelingmisalignment

+
−

paradigm
principles

facts
testing



Common principles

–Many sets of AI ethics principles have come out from different organizations over the last 

few years

• Private industry, governments, civil society

• Economically-developed countries

• Western philosophy

–Five common coarse-grained principles

1. Privacy

2. Fairness and justice

3. Safety and reliability

4. Transparency (which usually includes explainability)

5. Social responsibility and beneficence
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Differences across sectors

–Government

• Emphasis on economic growth and productive employment

• Arms race

–Private industry

• Mainly stick to the common principles

• Ethics washing

–Civil society

• Emphasis on shifting power to the vulnerable

• Critical theory
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Putting principles into practice has its own 
lifecycle. The first step is a series of small 
efforts initiated by tempered radicals
(people within the organization who 
believe in the change and continually take 
small steps toward achieving it).



Chapter 16
Lived experience
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“People with marginalized characteristics—so people who 
had experienced discrimination—had a deeper 
understanding of the kinds of things that could happen to 
people negatively and the way the world works in a way 
that was a bit less rosy.”

—Margaret Mitchell, research scientist at large

“Technical know-how cannot substitute for contextual 
understanding and lived experiences.”

—Meredith Whittaker, research scientist at New York 
University



Lived experience is the personal 
knowledge you have gained through 
direct involvement in things from which 
you have no option to escape.
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Epistemic advantage When people reflect on their 
experience of being 
oppressed, they are better 
able to understand all sides of 
power structures and 
decision-making systems than 
people who have not been 
oppressed.
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Socioculturally non-
homogeneous teams are 
more likely to slow down 
and consider critical and 
contentious issues.

Such a slowdown is not prevalent in 
homogeneous teams and importantly, 
does not depend on the team members 
having different sets of knowledge. All 
of the team members could know the 
critical issues, but still not consider 
them if the members are socioculturally 
homogeneous.

Information elaboration
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Chapter 17
Social good
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“Imagine what the world would look like if we built 
products that weren't defined by what the market tells us 
is profitable, but instead what our hearts tell us is 
essential.”

—Vilas Dhar, president of Patrick J. McGovern 
Foundation

“Find algorithms that benefit people on their own terms.”

—Jacob Metcalf, technology ethicist at Data & Society 
Research Institute



accessibility · agriculture · education · environment · financial inclusion · health care · infrastructure (e.g. urban 
planning and transportation) · information verification and validation · public safety and justice · social work

You should not think of social good as an 
application area of machine learning, but 
as a paradigm or value system.

Data science for social good requires social change organizations 
to be problem owners who state the problem specification based 
on the lived experiences of their beneficiaries.
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The data science for social good 
movement is a decade long, but most 
projects continue to only be 
demonstrations without meaningful and 
lasting impact on social change 
organizations and their constituents.

Nearly all efforts have been conducted as one-off projects that 
involve the development of a custom-tailored solution.
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1. Pilot and Innovate 2. Reuse and Harden 3. Deliver at Scale
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Bottom of the pyramid innovation



Part 7 
Foundation models
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traditional models foundation models

training tasks

self-
supervised 
pre-training

prompting

prompting
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dataset model

dataset model

dataset model

dataset model

dataset model

dataset model

dataset

dataset

datasetdataset

dataset

dataset

dataset

dataset

foundation 
model

fine-tuned 
model



Foundation model lifecycle
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data scraping

self-supervised 
representation 

learning

framing

tuning and 
alignment

auditing

application 
development

data 
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application 
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red team

data scientist / 
prompt engineer

deep learning 
engineer
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policymaker

fine-tuning
RLHF / RLAIF
----------------------------------
parameter-efficient fine-tuning
prompt-tuning

model provider

model consumer



Areas of ethical and social risk 

of harm associated with 

language foundation models.

Hate speech and exclusion

The language model accurately 

reflects unjust, toxic, and 

oppressive speech present in 

the training data.

Malicious uses

Humans intentionally use the 

language model to cause harm.

Human-computer interaction 

harms

Humans are deceived or made 

vulnerable via direct interaction 

with a powerful conversational 

agent.

Information hazards

The language model leaks or 

correctly infers sensitive 

information.

Misinformation harms

The language model provides 

false, misleading, nonsensical 

or poor-quality information.
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Discrimination and 

socioeconomic harms

Language models are used to 

underpin widely used 

downstream applications that 

disproportionately benefit and 

harm different groups.
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interpretability 
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ChatGPT and friends can be 

creative
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Source: 
https://www.springboard.com/blog/news/chatgpt-
revolution/



ChatGPT and friends can be 

mundane
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Source: https://www.hackingchinese.com/can-
chatgpt-pass-the-hsk/



Safety = 
constraints
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Creativity = 
quality + novelty
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Creativity is the generation of 
an artifact that is high-quality 
and novel.

Quality is application-specific

Novelty ~ Bayesian surprise

Creativity by generative ML is implicitly or explicitly combinatorial
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2 31Information-theoretic 

limits between quality 

and novelty in 

combinatorial creativity
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On average, higher 

quality implies lower 

novelty and vice versa.

The more immature a 

creative domain is, the 

smaller the size of the 

inspiration set. 

Creativity is easier 

because many concepts 

are unexplored. 

The feasible region 

bounded by the quality-

novelty tradeoff curve is 

larger.

When creative artifacts 

are constrained, the 

region becomes smaller

and creativity becomes 

more difficult. 

(This statistical 

phenomenon of optimal 

creativity systems 

contrasts the 

computational 

phenomenon of humans 

often being more 

creative with more 

constraints.)



Tradeoff between 
safety and 
creativity
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Safety is a constraint on 
artifacts. 

Like other constraints, 
safety makes the feasible 
region under the quality-
novelty tradeoff curve 
smaller and creativity more 
difficult.
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Banality, the lack of 
creativity, follows from
safety. 

There is a tradeoff between 
safety and creativity.
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Some applications of 
generative ML, like writing 
boilerplate, require safety 
whereas others, like inspiring 
a human poet, do not. 

Some applications of
generative ML, like writing 
poetry, require creativity 
and others, like writing 
boilerplate do not. 

Applications requiring
safety tend to also be ones 
not requiring creativity.

Applications not requiring 
safety tend to also be ones
requiring creativity.
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A trustworthy machine learning 
system is one that has 
sufficient:
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